The general solution of $\frac{{\tan \,2x\, - \,\tan \,x}}{{1\, + \,\tan \,x\,\tan \,2x}}\, = \,1$ is 

  • A

    $\phi $

  • B

    $n\pi  \pm \frac{\pi }{3}$

  • C

    $n\pi  + \frac{\pi }{4}$

  • D

    $n\pi  + \frac{\pi }{6}\left( {n \in z} \right)$

Similar Questions

Number of solutions of $8cosx$ = $x$ will be 

$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ in $0\, \le \,\theta\, \le \, \pi$ has :

If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is

The number of values of $\alpha $ in $[0, 2\pi]$ for which $2\,{\sin ^3}\,\alpha  - 7\,{\sin ^2}\,\alpha  + 7\,\sin \,\alpha  = 2$ , is

  • [JEE MAIN 2014]

If $n$ is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ is