The general solution of $\frac{{\tan \,2x\, - \,\tan \,x}}{{1\, + \,\tan \,x\,\tan \,2x}}\, = \,1$ is
$\phi $
$n\pi \pm \frac{\pi }{3}$
$n\pi + \frac{\pi }{4}$
$n\pi + \frac{\pi }{6}\left( {n \in z} \right)$
Number of solutions of $8cosx$ = $x$ will be
$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ in $0\, \le \,\theta\, \le \, \pi$ has :
If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is
The number of values of $\alpha $ in $[0, 2\pi]$ for which $2\,{\sin ^3}\,\alpha - 7\,{\sin ^2}\,\alpha + 7\,\sin \,\alpha = 2$ , is
If $n$ is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ is